PYTHON DEEP LEARNING

PYTHON DEEP LEARNING

INTRODUCCIÓN PRÁCTICA CON KERAS Y TENSORFLOW 2

TORRES, JORDI

28,40 €
IVA inclós
Últim exemplar. Enviament en 48 h.
Editorial:
Marcombo
Any d'edició:
2020
Matèria
Informática
ISBN:
978-84-267-2828-9
Pàgines:
415
Enquadernació:
Rústica
28,40 €
IVA inclós
Últim exemplar. Enviament en 48 h.
Afegir a favorits

PARTE 1: INTRODUCCIÓN
CAPÍTULO 1. ¿Qué es el Deep Learning?
1.1 Inteligencia artificial
1.2 Machine Learning
1.3 Redes Neuronales y Deep Learning
1.4 ¿Por qué ahora?
CAPÍTULO 2. Entorno de trabajo
2.1 Entorno Colab
2.2 TensorFlow
2.3 Keras
CAPÍTULO 3. Conceptos básicos de Python y sus librerías
3.1 Conceptos básicos de Python
3.2 Tensores
3.3 Librerías básicas

PARTE 2: FUNDAMENTOS DE DEEP LEARNING
CAPÍTULO 4. Redes neuronales densamente conectadas
4.1 Caso de estudio: reconocimiento de dígitos
4.2 Una neurona artificial
4.3 Redes neuronales
4.4 Función de activación softmax
CAPÍTULO 5. Redes neuronales en Keras
5.1 Precarga y preprocesado de datos
5.2 Definición del modelo
5.3 Configuración del proceso de aprendizaje
5.4 Entrenamiento del modelo
5.5 Evaluación del modelo
5.6 Generación de predicciones
CAPÍTULO 6. Cómo se entrena una red neuronal
6.1 Cómo aprende un modelo de red neuronal
6.2 Proceso de aprendizaje de una red neuronal
6.3 Funciones de activación
6.4 Componentes del backpropagation
CAPÍTULO 7. Parámetros e hiperparámetros en redes neuronales
7.1 Parametrización de los modelos
7.2 Hiperparámetros y optimizadores en Keras
7.3 Practicar con una clasificación binaria
CAPÍTULO 8. Redes neuronales convolucionales
8.1 Introducción a las redes neuronales convolucionales
8.2 Componentes básicos de una red neuronal convolucional
8.3 Implementación de un modelo básico en Keras
8.4 Hiperparámetros de la capa convolucional
8.5 Arquitecturas de redes convolucionales

PARTE 3: TÉCNICAS DEL DEEP LEARNING
CAPÍTULO 9. Etapas de un proyecto Deep Learning
9.1 Definición del problema
9.2 Preparar los datos
9.3 Desarrollar el modelo
9.4 Evaluación del modelo
CAPÍTULO 10. Datos para entrenar redes neuronales
10.1 ¿Dónde encontrar datos para entrenar redes neuronales?
10.2 ¿Cómo descargar y usar datos reales?
10.3 Datos de entrenamiento, validación y prueba
10.4 Overfitting de los modelos
CAPÍTULO 11. Data Augmentation y Transfer Learning
11.1 Data Augmentation
11.2 Transformaciones de imágenes
11.3 Transfer Learning
11.4 Feature Extraction
11.5 Fine-Tuning
CAPÍTULO 12. Arquitecturas avanzadas de redes neuronales
12.1 Capas y modelos de redes neuronales
12.2 API funcional de Keras
12.3 Redes neuronales con nombre propio
12.4 Redes neuronales preentrenadas

PARTE 4: DEEP LEARNING GENERATIVO
CAPÍTULO 13. Redes neuronales recurrentes
13.1 Conceptos básicos de redes neuronales recurrentes
13.2 Aprendizaje de las redes neuronales recurrentes
13.3 Vectorización de texto
13.4 Generación de texto con una red neuronal recurrente
CAPÍTULO 14. Generative Adversarial Networks
14.1 Motivación por las GAN
14.2 Arquitectura de las GAN
14.3 Programar una GAN

Clausura

Apéndice A: Traducción de los principales términos
Apéndice B: Tutorial de Google Colab
Apéndice C: Arquitecturas de redes CNN

Índice alfabético

La inteligencia artificial permite la innovación y el cambio en todos los aspectos de la vida moderna. La mayoría de los avances actuales se basan en Deep Learning, un área de conocimiento muy madura que permite a las empresas desarrollar y poner en producción sus algoritmos de aprendizaje automático. Muchos profesionales interesados en comprender el Deep Learning tienen dificultades en establecer una ruta adecuada para empezar y saltar la barrera de entrada en este campo de innovación, debido a su complejidad y falta de manuales sobre el tema. Por ello, este libro proporciona todos los contenidos necesarios para entender qué es el Deep Learning y conocer las posibilidades de esta tecnología. Gracias a la combinación de los principios teóricos del Deep Learning y el enfoque práctico de codificación, se iniciará en este apasionante mundo mediante el lenguaje Python y la API Keras de la librería TensorFlow, el entorno más popular para desarrollar aplicaciones Deep Learning tanto a nivel de empresa como de proveedores Cloud. Asimismo, conocerá las principales redes neuronales actuales, como las redes neuronales convolucionales, las redes neuronales recurrentes o las Generative Adversarial Network, entre otras. Además, en la parte inferior de la primera página encontrará el código de acceso que le permitirá acceder de forma gratuita a los códigos del libro en www.marcombo.info. Tanto si tiene poca experiencia en programación, como si es un programador experimentado, consiga este libro y obtenga las habilidades prácticas básicas que le permitirán comprender cómo funciona y qué hace posible (y qué no) el uso del Deep Learning en sus propios proyectos. Jordi Torres es catedrático en la UPC Barcelona Tech y lidera el grupo de investigación Emerging Technologies for Artificial Intelligence en el Barcelona Supercomputing Center. Tiene más de 30 años de experiencia en docencia e investigación en computación de altas prestaciones y ha publicado libros científicos y proyectos de I+D en empresas e instituciones. Es consejero delegado por la UPC en la empresa iThinkUPC, y actúa como formador y experto para diversas organizaciones y empresas. A su vez, imparte conferencias, colabora con diferentes medios de comunicación y mantiene un blog sobre ciencia y tecnología en www.torres.ai

Articles relacionats

  • INTELIGENCIA ARTIFICIAL PARA OPTIMIZAR PROCESOS DE TRABAJO
    VÁZQUEZ-DODERO SAINZ, BRUNO / RUBIO AHUMADA, FERNANDO / GARCÍA BUSTAMANTE, ERNESTO / SERRANO ACITORES, ANTONIO
    La inteligencia artificial forma parte de nuestro presente y ha comenzado a transformar el futuro en todos los ámbitos. Este libro no es solo una guía técnica, sino un manual que aborda transversalmente, desde la perspectiva de cuatro profesionales, cada uno en su especialidad, las inmensas posibilidades que ofrece la IA en la optimización de procesos de trabajo para obtener id...
    Últim exemplar. Enviament en 48 h.

    26,50 €

  • OFFICE 2025
    DELGADO, JOSE MARÍA
    La cuota de mercado de Microsoft Office a nivel mundial es abrumadora, tanto en el ámbito personal como profesional. Este manual describe con un lenguaje claro, conciso y directo los conceptos necesarios para aprovechar los recursos más importantes que ofrece la última versión de esta suite ofimática.Libera tu creatividad y expresa cualquier idea con las impactantes presentacio...
    Últim exemplar. Enviament en 48 h.

    29,95 €

  • GUÍA PRÁCTICA DE LA IA
    SIEGEL, ERIC
    La mejor herramienta es la más difícil de utilizar. El machine learning es la tecnología de uso general más importante del mundo, pero es muy complicada de lanzar. Fuera de los gigantes tecnológicos y algunas otras empresas líderes, las iniciativas de machine learning suelen fallar a la hora de implementarse y nunca llegan a aportar valor. ¿Qué falta? Una práctica empresarial e...
    Últim exemplar. Enviament en 48 h.

    27,50 €

  • DOMINA CHATGPT EN 3 DÍAS Y APROVECHA TODO SU POTENCIAL - 2.ª EDICIÓN
    TAPIAS CANTOS, PABLO
    ¿Cómo puede la Inteligencia Artificial revolucionar tu vida? ChatGPT es una herramienta pionera capaz de liberar tu creatividad, agilizar tareas y elevar tu productividad en los ámbitos personal y profesional. Si quieres descubrir cómo ChatGPT puede mejorar tu forma de trabajar, aprender y crear, has llegado al libro indicado. Con esta segunda edición, lograrás comprender y apr...
    Últim exemplar. Enviament en 48 h.

    14,80 €

  • INTELIGENCIA ARTIFICIAL: LUCES Y SOMBRAS
    ROSA MARIA ALSINA PAGÈS
    La disrupción tecnológica que estamos viviendo es exponencial. La velocidad de innovación de las nuevas tecnologías, en especial, de la Inteligencia Artificial, es tan acelerada que plantea grandes desafíos de tipo político, económico, cultural, ético y espiritual. En este pequeño libro se recogen tres miradas distintas, pero complementarias, que velan por tratar de responder a...
    Últim exemplar. Enviament en 48 h.

    14,00 €

  • CHATGPT Y OPENAI. DESARROLLO Y USO DE HERRAMIENTAS DE INTELIGENCIA ARTIFICIAL GE
    ARTURO SANCHEZ PALACIO
    Con la irrupción de ChatGPT en 2022, la inteligencia artificial generativa dio un salto revolucionario, democratizando el acceso a modelos avanzados de procesamiento de lenguaje. Este libro ofrece una guía completa para comprender, utilizar y desarrollar aplicaciones basadas en estos modelos, con un enfoque especial en ChatGPT y la suite de OpenAI.Desde los conceptos fundamenta...
    Últim exemplar. Enviament en 48 h.

    27,90 €

Altres llibres de l'autor