GRANDES MODELOS DE LENGUAJE

GRANDES MODELOS DE LENGUAJE

CONCEPTOS, TÉCNICAS Y APLICACIONES

ATKINSON-ABUTRIDY, JOHN

23,40 €
IVA incluido
Última ud. Envío desde 48h laborables
Editorial:
Marcombo
Año de edición:
2023
Materia
Informática
ISBN:
978-84-267-3679-6
Páginas:
284
Encuadernación:
Rústica
23,40 €
IVA incluido
Última ud. Envío desde 48h laborables
Añadir a favoritos

Índice de figuras ................................................................................................ XIX
Índice de tablas ................................................................................................ XXII
CAPÍTULO 1 ............................................................................................................ 1
1.1. Inteligencia artificial generativa ............................................................ 1
1.1.1. Funcionamiento de la IA generativa ................................................. 3
1.1.2. Focos de la IA generativa .................................................................. 6
1.1.3. Aplicaciones ...................................................................................... 7
1.2. Modelos de lenguaje generativos ......................................................... 8
1.3. Conclusiones ....................................................................................... 14
CAPÍTULO 2 .......................................................................................................... 15
2.1. Introducción ........................................................................................ 15
2.2. Modelos de lenguaje autorregresivos ................................................ 19
2.3. Modelos de lenguaje estadísticos ....................................................... 21
2.4. Modelos de lenguaje neuronales ........................................................ 22
2.4.1. Modelos de lenguaje preentrenados ............................................. 25
2.5. Grandes modelos de lenguaje ............................................................ 26
2.6. Modelos de embeddings de palabras ................................................. 27
2.7. Redes neuronales recurrentes ............................................................ 35
2.7.1. Redes neuronales recurrentes simples .......................................... 35
2.7.2. Redes de memoria a corto-largo plazo ........................................... 40
2.8. Autoencoders ...................................................................................... 44
2.8.1. Cuello de botella de la información ................................................ 46
2.8.2. Variables latentes ........................................................................... 47
2.8.3. Arquitectura de un Autoencoder ................................................... 49
2.8.4. Tipos de Autoencoders ................................................................... 50
2.9. Redes adversarias generativas ............................................................ 56
2.10. Modelos de atención .......................................................................... 59
2.10.1. Problema del encoder-decoder ...................................................... 61
2.10.2. Atención en modelos de secuencia ................................................ 63
2.11. Transformers ....................................................................................... 80
2.11.1. Capa del encoder ............................................................................ 84
2.11.2. Codificación posicional ................................................................... 85
2.11.3. Conexiones residuales .................................................................... 89
2.11.4. Capa del decoder ............................................................................ 90
2.11.5. Capa lineal y SoftMax ..................................................................... 93
2.11.6. Entrenamiento ............................................................................... 94
2.11.7. Inferencia ........................................................................................ 96
2.11.8. Función de pérdida ......................................................................... 98
2.12. Conclusiones ..................................................................................... 100
CAPÍTULO 3 ........................................................................................................ 101
3.1. Introducción ...................................................................................... 101
3.1.1. Habilidades emergentes ............................................................... 102
3.1.2. Técnicas de mejoramiento de capacidades .................................. 104
3.1.3. Corpus comunes ........................................................................... 105
3.1.4. Tipos de entrenamiento ............................................................... 106
3.1.5. Tipos de aprendizaje ..................................................................... 107
3.1.6. Tipos de tokenización ................................................................... 109
3.2. BERT .................................................................................................. 110
3.2.1. Funcionamiento ............................................................................ 112
3.2.2. Arquitectura ................................................................................. 115
3.2.3. Entrada del modelo ...................................................................... 115
3.2.4. Salida del modelo ......................................................................... 116
3.2.5. Modelos preentrenados basados en BERT ................................... 118
3.3. GPT .................................................................................................... 119
3.3.1. El modelo GPT y GPT-2 ................................................................. 121
3.3.2. El modelo GPT-3 ........................................................................... 131
3.3.3. El modelo GPT-4 ........................................................................... 134
3.3.4. Reinforcement Learning from Human Feedback ......................... 135
3.4. PaLM ................................................................................................. 140
3.4.1. Vocabulario .................................................................................. 143
3.4.2. Entrenamiento ............................................................................. 144
3.4.3. PaLM-2 ......................................................................................... 145
3.5. LLaMA ............................................................................................... 148
3.5.1. Datos de preentrenamiento ......................................................... 149
3.5.2. Arquitectura ................................................................................. 150
3.6. LaMDA ............................................................................................... 151
3.6.1. Objetivos y métricas ..................................................................... 153
3.6.2. Preentrenamiento de LaMDA ....................................................... 154
3.7. MEGATRON ....................................................................................... 156
3.7.1. Datos de entrenamiento .............................................................. 159
3.8. Otros LLM .......................................................................................... 160
3.9. Conclusiones ..................................................................................... 162
CAPÍTULO 4 ........................................................................................................ 165
4.1. Introducción ...................................................................................... 165
4.2. Tareas de evaluación ........................................................................ 166
4.2.1. Tareas básicas de evaluación ....................................................... 167
4.2.2. Tareas avanzadas de evaluación .................................................. 171
4.2.3. Tareas de cumplimiento de regulaciones ..................................... 172
4.3. Métricas y puntos de referencia ....................................................... 176
4.4. Datasets de Benchmark .................................................................... 178
4.4.1. SQuAD (Stanford Question Answering Dataset) .......................... 178
4.4.2. GLUE (General Language Understanding Evaluation) .................. 179
4.4.3. SNLI (Stanford Natural Language Inference) ................................ 180
4.4.4. ARC (Abstraction and Reasoning Corpus) ..................................... 180
4.5. Evaluación de LLM ............................................................................ 181
4.6. Conclusiones ..................................................................................... 186
CAPÍTULO 5 ........................................................................................................ 189
5.1. Introducción ...................................................................................... 189
5.2. Clasificación de sentimientos ............................................................ 190
5.3. Búsqueda semántica en textos ......................................................... 197
5.4. Razonamiento con agentes de lenguaje ........................................... 198
5.5. Inferencia causal ............................................................................... 201
5.6. Acceso a bases de datos en lenguaje natural ................................... 203
5.7. Cargando y preguntando por datos propios ..................................... 206
5.8. Realizando ajuste fino de un modelo con datos propios .................. 209
5.9. Diseño y optimización de prompts .................................................... 214
5.10. Sistema conversacional ChatGPT ...................................................... 221
5.11. Sistema conversacional BARD ........................................................... 229
5.12. Conclusiones ..................................................................................... 231
CAPÍTULO 6 ........................................................................................................ 233
6.1. Introducción ...................................................................................... 233
6.2. Habilidades emergentes ................................................................... 234
6.3. LLM en producción ........................................................................... 236
6.4. Alineación entre humanos y LLM ...................................................... 238
6.5. Ética .................................................................................................. 240
6.6. Aspectos regulatorios ....................................................................... 242
6.7. Complejidad ...................................................................................... 243
6.8. Riesgos .............................................................................................. 244
6.9. Limitaciones ...................................................................................... 245
6.10. Conclusiones ..................................................................................... 247
Índice onomástico ............................................................................................ 249
Bibliografía ....................................................................................................... 253

¡Prepárese para sumergirse en el mundo fascinante y vanguardista de la inteligencia artificial! En este libro descubrirá el nexo en común que impulsa algunas de las aplicaciones recientes más revolucionarias de la inteligencia artificial (IA): desde sistemas conversacionales como ChatGPT o BARD, hasta la traducción automática, generación de resúmenes, respuesta a preguntas y mucho más. En el centro de estas innovadoras aplicaciones, se encuentra una disciplina poderosa y en creciente evolución, el procesamiento del lenguaje natural (PLN o NLP, por sus siglas en inglés). Durante más de 60 años, la investigación de esta ciencia ha estado enfocada en permitir que las máquinas comprendan y generen lenguaje humano de manera eficiente. Los secretos detrás de estos avances tecnológicos residen en los grandes modelos de lenguaje (LLM), cuyo poder radica en su capacidad de capturar patrones complejos y aprender representaciones contextuales del lenguaje. Imagine cómo estos modelos pueden poner atención en los detalles más relevantes de un texto, aprendiendo automáticamente relaciones complejas para brindar respuestas y resultados más precisos. ¿Cómo funcionan estos LLM? ¿Cuáles son los modelos disponibles y cómo se evalúan? Este libro le ayudará a responder estas y muchas otras preguntas. Con una introducción técnica pero accesible: ' Explorará el fascinante mundo de los LLM, desde sus fundamentos hasta las aplicaciones más poderosas. ' Aprenderá a construir sus propias aplicaciones simples con algunos de los LLM. Grandes modelos de lenguaje está diseñado para guiarle paso a paso en este emocionante viaje. Con 6 capítulos que combinan teoría y práctica, junto con ejercicios en Python en la plataforma Colab, dominará los secretos de los LLM y su aplicación en el procesamiento del lenguaje natural. Desde las redes neuronales profundas y los mecanismos de atención, hasta los LLM más relevantes tales como BERT, GPT-4, LLaMA, Palm-2 y Falcon, será testigo de los logros más importantes en NLP. No solo conocerá los benchmarks utilizados para evaluar las capacidades de estos modelos, sino que también adquirirá la habilidad para crear sus propias aplicaciones de NLP. No espere más para iniciar esta lectura. Gracias a ella entenderá los paradigmas, los métodos computacionales y los modelos para desarrollar aplicaciones que procesarán o generarán lenguaje natural para diferentes propósitos y nichos de aplicación.

Artículos relacionados

  • DOMINA LA INTELIGENCIA ARTIFICIAL ANTES DE QUE ELLA TE DOMINE A TI
    ROUHIAINEN, LASSE
    La inteligencia artificial ya no es el futuro, es el presente redefiniendo tu vida profesional y personalQuienes no dominen esta tecnología quedarán relegados. Este libro es tu guía práctica para prosperar en una realidad donde la IA no es opcional. Descubre 101 estrategias que marcarán la diferencia entre liderar el cambio o ser reemplazado. Prepárate para una nueva realidad d...
    Última ud. Envío desde 48h laborables

    19,95 €

  • INTELIGENCIA ARTIFICIAL E INNOVACIÓN
    HATAMLEH, OMAR / LEWRICK, MICHAEL
    Cómo transformar el enfoque de tu organización hacia la IA con marcos probados de líderes mundiales.La inteligencia artificial (IA) está cambiando rápidamente el mundo. Ya se trate de coches autónomos o asistentes virtuales, la IA generativa está teniendo un gran impacto en nuestras vidas. Y el futuro de la IA y la innovación se presenta aún más prometedor. En este libro, los a...
    Última ud. Envío desde 48h laborables

    23,95 €

  • REVOLUCIÓN NO-CODE
    VAUGHTTON, ÁLEX
    ¿Alguna vez has tenido una idea brillante pero te has sentido frenado porque no sabes programar? ¿Te ha pasado que piensas que necesitas gastar una fortuna en una agencia de desarrollo para hacerla realidad?Revolución NO-CODE es el primer libro en español que aborda en profundidad el movimiento No-code. En sus páginas, se presentarán casos reales de emprendedores y empresas que...
    Última ud. Envío desde 48h laborables

    19,95 €

  • MICROPYTHON EN PROYECTOS. UNA INTRODUCCIÓN PRÁCTICA A LA PROGRAMACIÓN DE MICROCO
    PADÍN ROMERO, BEATRIZ / DAPENA JANEIRO, ADRIANA
    Desarrolle proyectos en MicroPython paso a paso Vivimos rodeados de microcontroladores. Estos pequeños ordenadores, programados para realizar tareas concretas, son la pieza central de muchos de los dispositivos electrónicos con los que interactuamos a diario: electrodomésticos, automóviles, sistemas de monitorización y control? Sin embargo, a pesar de su ubicuidad, su funciona...
    Última ud. Envío desde 48h laborables

    22,80 €

  • PHOTOSHOP + IA. LA EDICIÓN DEL FUTURO
    DELGADO, JOSE MARÍA
    Photoshop es, sin lugar a duda, la herramienta más completa para la edición de imágenes, el retoque fotográfico y el diseño digital. Sus posibilidades son innumerables y abarcan un amplio espectro de aplicaciones: desde proyectos para Internet y desarrollos móviles hasta edición digital y retoque fotográfico. Se ha convertido en un recurso imprescindible para usuarios principia...
    Última ud. Envío desde 48h laborables

    35,95 €

  • INTELIGENCIA ARTIFICAL: JUGAR O ROMPER LA BARAJA
    PADILLA, MARGARITA
    ¿Qué sería una inteligencia artificial radical? Mejor dicho, ¿cómo sería una relación radical con la inteligencia artificial? ¿Es posible volver a sentir la alegría hacker por la potencia de actuar, de subvertir, de crear? Margarita Padilla rastrea la historia de la inteligencia artificial para explicar de forma accesible cómo funciona, las falacias de los solucionistas tecnol...
    Última ud. Envío desde 48h laborables

    20,00 €