DEMOSTRACIONES CON ENCANTO

DEMOSTRACIONES CON ENCANTO

UN VIAJE POR LAS MATEMATICAS ELEGANTES

ALSINA I CATALA, CLAUDI / NELSEN , ROGER B.

21,00 €
Tax Included (IVA)
Unavailable
Publishing house :
Ediciones SM
Year of edition:
2021
Matter
Matemáticas
ISBN:
978-84-1318-779-2
Pages :
292
Binding :
Rústica
21,00 €
Tax Included (IVA)
Unavailable
Add to favorites

Prólogo....................................................................11Introducción........................................................... 15Capítulo 1. Un jardín de enteros.................................................................... 211.1. Números figurados.................................................................211.2. Sumas de cuadrados, cubos y números triangulares............................................................ 261.3. Hay infinitos primos.................................................................... 291.4. Números de Fibonacci................................................................ 321.5. El teorema de Fermat.................................................................... 351.6. El teorema de Wilson.................................................................... 351.7. Números perfectos................................................................. 361.8. Desafíos.................................................................  37Capítulo 2. Números ilustres.................................................................... 392.1. La irracionalidad de 2............................................................................. 402.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 412.3. La razón áurea...................................................................... 422.4. La circunferencia y p............................................................................. 452.5. La irracionalidad de p............................................................................. 472.6. El conde de Buffon y su aguja...................................................................... 482.7. El número e como límite..................................................................... 492.8. Una serie infinita para e............................................................................ 522.9. La irracionalidad de e............................................................................ 522.10. El problema de Steiner sobre el número e............................................................................ 532.11. La constante de Euler-Mascheroni........................................................... 532.12. Exponentes racionales e irracionales........................................................... 552.13. Desafíos................................................................ 56Capítulo 3. Puntos en el plano..................................................................... 593.1. La fórmula de Pick....................................................................... 593.2. Circunferencias y sumas de dos cuadrados.............................................................. 613.3. El teorema de Sylvester-Gallai.................................................................... 633.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 643.5. Palomas y palomares............................................................. 653.6. Asignando números a los puntos del plano..................................................................... 663.7. Desafíos......................................................... 68Capítulo 4. El patio de recreo de los polígonos.............................................................. 694.1. Combinatoria poligonal............................................................... 694. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 724.3. Los teoremas de Maekawa y Kawasaki............................................................... 734.4. Cuadratura de polígonos............................................................... 754.5. Las estrellas del patio de los polígonos............................................................... 764.6. Los vigilantes de la galería de arte......................................................................... 784.7. Triangulaciones de polígonos convexos................................................................ 804.8. Cicloides, ciclógonos y cicloides poligonales............................................................. 834.9. Desafíos.................................................................. 85Capítulo 5. Un tesoro de teoremas sobre triángulos................................................................ 875.1. El teorema de Pitágoras................................................................. 875.2. Parentescos pitagóricos.............................................................. 885.3. El radio de la circunferencia inscrita en un triángulo rectángulo ............................................... 915.4. La generalización de Pappus del teorema de Pitágoras................................................................. 925.5. La circunferencia inscrita y la fórmula de Herón...................................................................... 935.6. La circunferencia circunscrita y la desigualdad triangular de Euler ................................................. 955.7. El triángulo órtico...................................................................... 965.8. La desigualdad de Erdo?s-Mordell................................................................... 975.9. El teorema de Steiner-Lehmus................................................................... 995.10. Las medianas de un triángulo............................................................... 1005.11. ¿Son obtusángulos la mayoría de los triángulos?............................................................ 1025.12. Desafíos................................................................ 103Capítulo 6. El embrujo del triángulo equilátero.............................................................. 1056.1. Teoremas de estilo pitagórico.............................................................. 1056.2. El punto de Fermat de un triángulo............................................................... 1086.3. El teorema de Viviani.................................................................. 1096.4. Una teselación triangular del plano y la desigualdad de Weitzenböck................................ 1106.5. El teorema de Napoleón.............................................................. 1126.6. El milagro de Morley.................................................................. 1136.7. El teorema de Van Schooten............................................................... 1156.8. El triángulo equilátero y la razón áurea..................................................................... 1166.9. Desafíos......................................................... 117Capítulo 7. El rincón de los cuadriláteros......................................................... 1197.1. Puntos medios en cuadriláteros......................................................... 1197. 2. Cuadriláteros cíclicos................................................................. 1217.3. Igualdades y desigualdades en un cuadrilátero.......................................................... 1237.4. Cuadriláteros tangenciales y bicéntricos............................................................ 1267.5. Los teoremas de Anne y Newton................................................................. 1277.6. Pitágoras con un paralelogramo y triángulos equiláteros ........................................................... 1297.7. Desafíos........................................................ 130Capítulo 8. Cuadrados por todas partes.................................................................... 1338.1. Teoremas con un cuadrado............................................................... 1338.2. Teoremas con dos cuadrados.............................................................. 1358.3. Teoremas con tres cuadrados.............................................................. 1408.4. Con cuatro y más cuadrados.............................................................. 1428.5. Cuadrados y matemáticas recreativas............................................................ 1448.6. Desafíos......................................................... 146Capítulo 9. Curvas a la vista .............................................................................  149 Cuadraturas de lúnulas ............................................................................. 1499.2. La asombrosa espiral de Arquímedes ............................................................................ 1559.3. La cuadratriz de Hipias................................................................. 1579.4. El cuchillo de zapatero y la bodega de sal....................................................................... 1589.5. Las cónicas según Quetelet y Dandelin ............................................................................ 1609.6. Triángulos de Arquímedes.........................................................1619.7. Hélices............................................................... 1649.8. Desafíos.............................................................. 165Capítulo 10. Aventuras con embaldosados y coloreados........................................................... 16910.1. Embaldosados y teselaciones del plano................................................................... 17010.2. Embaldosados con triángulos y cuadriláteros....................................................... 17410.3. Infinitas demostraciones del teorema de Pitágoras............................................................. 17710.4. La rana saltarina............................................................... 17910.5. Los siete frisos.................................................................... 18110.6. Demostraciones coloridas ....................................................................................... 18410.7. El dodecaedro y los caminos hamiltonianos.......................................................... 19210.8. Desafíos..................................................................................................................... 194Capítulo 11. Geometría en tres dimensiones...................................................... 19711.1. El teorema de Pitágoras en tres dimensiones....................................................... 19811.2. Particiones del espacio con planos........................................................................ 19911.3. Triángulos correspondientes en tres rectas.......................................................... 20111.4. Un cono que triseca ángulos ................................................................................. 20111.5. La intersección de tres superficies esféricas......................................................... 20211.6. La cuarta circunferencia......................................................................................... 20411.7. El área del triángulo esférico................................................................................. 20511.8. La fórmula de Euler para poliedros....................................................................... 20611.9. Caras y vértices de poliedros convexos................................................................. 20711.10. ¿Por qué se repiten las formas de algunas caras de los poliedros?..................... 20911.11. Euler y Descartes à la Pólya................................................................................... 21011.12. Cuadriculando cuadrados y cubiculando cubos................................................... 21111.13. Desafíos................................................................................................................... 213Capítulo 12. El patio de recreo de los polígonos................................................ 21512.1. Conjuntos numerables y no numerables.............................................................. 21512.2. El teorema de Cantor-Schröder-Bernstein............................................................ 21712.3. La desigualdad de Cauchy-Schwarz...................................................................... 21812.4. La desigualdad entre la media aritmética y la media geométrica....................... 22012.5. Dos perlas del origami............................................................................................ 22112.6. ¿Cómo dibujar una línea recta?.............................................................................. 22312.7. Algunas joyas de las ecuaciones funcionales....................................................... 22512.8. Desigualdades funcionales.................................................................................... 23012.9. La serie de Euler para p2/6..................................................................................... 23312.10. El producto de Wallis.............................................................................................. 23512.11. La aproximación de Stirling para n!...................................................................... 23612.12. Desafíos................................................................................................................... 238Soluciones a los desafíos........................................................................................... 241Capítulo 1........................................................................................................................... 241Capítulo 2........................................................................................................................... 243Capítulo 3........................................................................................................................... 247Capítulo 4........................................................................................................................... 249Capítulo 5........................................................................................................................... 251Capítulo 6........................................................................................................................... 255Capítulo 7........................................................................................................................... 258Capítulo 8........................................................................................................................... 261Capítulo 9........................................................................................................................... 262Capítulo 10......................................................................................................................... 265Capítulo 11.......................................................................................................................... 269Capítulo 12......................................................................................................................... 270Referencias bibliográficas......................................................................................... 273Índice por palabras...................................................................................................... 283Sobre los autores........................................................................................................... 289

Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas. áA través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar de la belleza de las matemáticas.Además, cada capítulo concluye con desafíos al lector ?se plantean alrededor de ciento treinta?, a quien animamos a que busque por sí mismo demostraciones con encanto y a compartir sus descubrimientos con otros.á

Artículos relacionados

  • CON ALGORITMOS Y A LO LOCO
    GRIMA RUIZ, CLARA
    Una divertida apología de los algoritmos que nos recuerdan que la humanidad no habría llegado hasta donde está, para bien o para mal, sin sus asombrosas aplicaciones.  Nuestra vida está llena de algoritmos, y no es de extrañar, pues esta palabra tan en boga se refiere a procedimientos esenciales en nuestras vidas, aunque se haya convertido, para mucha gente, en sinónimo de a...
    Only one copy available. Shipping in 48

    18,90 €

  • 50 COSAS QUE HAY QUE SABER SOBRE MATEMÁTICAS
    CRILLY, TONY
    Un riguroso y exhaustivo recorrido por los descubrimientos, las ideas y los problemas matemáticos más importantes desde la Antigüedad hasta nuestros días.¿Quién inventó el número cero? ¿Por qué hay 60 segundos en un minuto? ¿Cómo es de grande el infinito? ¿Dónde se cruzan las líneas paralelas? ¿Es cierto que el aleteo de una mariposa puede causar una tormenta en la otra punta d...
    Only one copy available. Shipping in 48

    15,90 €

  • LENGUAJE DIVINO, UN
    WILKINSON, ALEC
    La crónica de un viaje muy personal a un mundo nuevo: el universo infinito de los números.Tras una larga carrera como escritor y periodista, y al borde del otoño de la vida, Alec Wilkinson se enfrenta a un reto que arrastra desde su infancia: aprender matemáticas. Lo que comienza como un desafío personal, se transforma pronto en el descubrimiento de un lenguaje y una lógica nue...
    Only one copy available. Shipping in 48

    21,95 €

  • MATHEMATICA
    LEES, DR JAMES
    Mathematica plantea un recorrido general y fidedigno por la historia de esta ciencia. Se divide en tres grandes apartados: las matemáticas antes del Renacimiento, las matemáticas a partir del Renacimiento y las matemáticas modernas. Cada uno propone al lector un viaje por las matemáticas de la época, revelando los avances más fascinantes, las teorías más rompedoras y las me...
    Only one copy available. Shipping in 48

    39,95 €

  • LA VIDA SECRETA DE LOS NÚMEROS
    KITAGAWA, KATE / REVELL, TIMOTHY
    La doctora Kate Kitagawa y el galardonado periodista Timothy Revell nos proponen en La vida secreta de los números una historia global de las matemáticas en la que dan voz a los grandes matemáticos olvidados, cuyas vidas y descubrimientos se extienden a lo largo de seis continentes y abarcan miles de años.Las matemáticas dan forma a casi todo lo que hacemos. No obstante, lo que...
    Only one copy available. Shipping in 48

    20,90 €

  • INTRODUCCIÓN AL ANÁLISIS FUNCIONAL. 2ª EDICIÓN
    GATICA, GABRIEL N.
    Este libro aborda los resultados clave del Análisis Funcional y sus aplicaciones en Matemática, Física e Ingeniería. Está diseñado como texto y obra de consulta, dirigido a estudiantes y profesores de pregrado en Matemática, Ingeniería Civil y disciplinas relacionadas, así como a quienes cursan maestrías o doctorados en estas áreas.Cubre los temas clásicos como dualidad, operad...
    Only one copy available. Shipping in 48

    34,95 €

Other books of the author

  • DEMOSTRACIONES CON ENCANTO (EBOOK-EPUB)
    ALSINA I CATALÀ, CLAUDI / NELSEN , ROGER B.
    Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas.  A través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar d...
    Out of Stock. Ask for availability

    7,99 €